
Digital Object Identifier (DOI) 10.1007/s100520100847
Eur. Phys. J. C 22, 707–713 (2002) THE EUROPEAN

PHYSICAL JOURNAL C

Couplings between pion and charmed mesons
Hungchong Kima, Su Houng Lee

Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea

Received: 10 October 2001 / Revised version: 25 October 2001 /
Published online: 7 December 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. We compute the couplings DD∗π, D1D
∗π, D∗D∗π and D1D1π using QCD sum rules. These

couplings are important inputs in the meson-exchange model calculations used to estimate the amount of
J/ψ absorption due to pions and rho mesons in heavy-ion collisions. Our sum rules are constructed at the
first order in the pion momentum pµ, which give the couplings that are not trivially related to the soft-pion
theorem. Our calculated couplings, which somewhat depend upon the values of the heavy meson decay
constants, are gDD∗π = 8.2± 0.1, gD1D∗π = 15.8± 2GeV, gD∗D∗π = 0.3± 0.03 and gD1D1π = 0.17± 0.04.

1 Introduction

J/ψ suppression [1] seems to be one of the most promis-
ing signals for QGP formation in RHIC. Indeed the recent
data at CERN [2] show an anomalous suppression of J/ψ
formation, which seems to be a consequence of QGP for-
mation [3]. However, before coming to a conclusion, one
has to estimate the amount of J/ψ suppression due to
hadronic final state interactions.

Consequently, there have been a number of works, us-
ing various models [4–13], calculating the J/ψ absorption
cross section by light mesons. However, the estimate varies
by an order of magnitude near threshold. At this stage, it
is necessary to probe all model calculations further to spell
out their corrections and uncertainties.

In the effective meson-exchange model approaches [9–
13], important ingredients are the couplings between open
charm mesons and light mesons. The precise determina-
tion of the couplings reduces the uncertainties in the cal-
culation of the dissociation process. Moreover, a complete
set of low-lying open charm mesons, D(1870), D∗(2010)
and D1(2420), has to be included. This is especially neces-
sary in order to probe the cross section above the thresh-
old. To provide the basic building blocks for such a model
calculation, we use QCD sum rules [14,15] and calculate
the couplings DD∗π, D∗D∗π, D1D1π and D1D

∗π. These
can be used to improve the existing effective model calcu-
lations, which can be applied to a future calculation [16]
of the J/ψ dissociation process.

At present, there are two approaches in the literature
to calculate the coupling in the QCD sum rule approach:
light-cone QCD sum rules (LCQSR) [17,19,18] relying on
the operator product expansion near the light cone, and
the conventional QCD sum rules [20–22] based on the
short-distance expansion. Predictions from LCQSR heav-
ily depend on the twist-2 pion wave function at the middle
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point, whose value, however, has been at the core of de-
bates for a long time [23]. Furthermore, the duality issue in
constructing the continuum needs to be carefully consid-
ered [24]. Instead, the conventional QCD sum rules [20–22]
do not suffer from such an uncertainty as the QCD pa-
rameters appearing in this approach are determined from
the low-energy theorems such as PCAC and the soft-pion
theorem. Though QCD duality again needs to be applied
carefully in these sum rules [25,26], the uncertainties from
the QCD side can be substantially reduced.

In this work, we provide a systematic approach to
calculate the couplings using the conventional QCD sum
rules. Our sum rules will be constructed at the first order
in the pion momentum O(pµ). We improve the previous
sum rule calculations of the DD∗π and D∗D∗π couplings
[20–22]. In particular, QCD duality will be correctly ap-
plied according to the recent suggestion in [25,26]. Also
in constructing a sum rule for DD∗π, we advocate the
use of a different structure function. We then construct
similar sum rules for the couplings, D1D1π and D1D

∗π,
which may be important for future calculation of the J/ψ
dissociation process accompanying the D1 meson [16].

2 OPE for general correlation function

In this section, we schematically describe a general pro-
cedure to perform the operator product expansion (OPE)
of the general correlation function with a pion,

Π(p, q) = i
∫
d4xeiq·x (1)

×〈0|T{d̄(x)Γ1c(x), c̄(0)Γ2u(0)}|π(p)〉.
Γ1 and Γ2 denote specific gamma matrices correspond-
ing to the coupling of concern. In later sections, we will
use this general prescription, by simple replacements, to
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Fig. 1a,b. The OPE diagrams considered in this work. The
blob in a denotes the quark–antiquark component with a pion
and the blob in b denotes the quark–antiquark–gluon compo-
nent with a pion

calculate the OPE for the correlation function of concern.
For instance, to calculate theDD∗π coupling, we will have
Γ1 = γµ and Γ2 = iγ5.

To calculate the coupling that is not trivially related
by chiral symmetry, we will consider the correlation func-
tion at the first order of the pion momentum pµ in its
expansion. The soft-pion limit of the correlation function
is just a chiral rotation of a vacuum correlation function
(i.e. without the pion), which provides a coupling that is
trivially related to the vacuum correlation function. For
example, in the case of the pion–nucleon coupling [27],
the soft-pion limit leads to a Goldberger–Treiman rela-
tion with gA = 1, which gives a coupling 30% lower than
its experimental value. To determine the coupling more
precisely, one needs to go beyond the soft-pion limit.

First, we restrict ourselves to the OPE diagram shown
in Fig. 1a. For this diagram, we can rewrite the correlation
function in the form

−i
∫

d4k

(2π)4
Tr

[
i
q/− k/+mc

(q − k)2 −m2
c

Γ2Daa(k, p)Γ1

]
. (2)

Roman indices denote colors. The free c-quark propagator
has been used in obtaining this. Dab(k, p), which is shown
by the blob in the figure, denotes the quark–antiquark
component with a pion. This can be separated into three
pieces depending on the Dirac matrices involved,

Dab(k, p) = δab

[
iγ5A(k, p) + γαγ5B

α(k, p)

+γ5σαβC
αβ(k, p)

]
. (3)

The three invariant functions of k, p are defined by

A(k, p) =
1
12

∞∑
n=0

1
n!

〈0|d̄ ←Dα1 · · · ←Dαn iγ5u|π(p)〉

× (2π)4
∂n

i∂kα1 · · · i∂kαn

δ(4)(k),

Bα(k, p) =
1
12

∞∑
n=0

1
n!

〈0|d̄ ←Dα1 · · · ←Dαn
γαγ5u|π(p)〉

× (2π)4
∂n

i∂kα1 · · · i∂kαn

δ(4)(k),

Cαβ(k, p) = − 1
24

∞∑
n=0

1
n!

〈0|d̄ ←Dα1 · · · ←Dαn γ5σ
αβu|π(p)〉

× (2π)4
∂n

i∂kα1 · · · i∂kαn

δ(4)(k). (4)

Since we are constructing the sum rules at the orderO(pµ),
we need to evaluate the pion matrix elements at O(pµ).
Noting that the pion matrix elements involved are sym-
metric under exchanges of any pair of indices α1 · · ·αn

and using the soft-pion theorem and PCAC, we straight-
forwardly obtain

〈0|d̄ ←Dα1 iγ5u|π(p)〉 =
〈q̄q〉
fπ

ipα1 ,

〈0|d̄ ←Dα1

←
Dα2

←
Dα3 iγ5u|π(p)〉

=
im2

0〈q̄q〉
12fπ

(pα1gα2α3 + pα2gα1α3 + pα3gα1α2),

〈0|d̄γαγ5u|π(p)〉 = ipαfπ,

〈0|d̄ ←Dα1

←
Dα2 γαγ5u|π(p)〉

= ifπδ
2
[
pαgα1α2

5
18

− (pα2gαα1 + pα1gαα2)
1
18

]
,

〈0|d̄ ←Dα1 γ5σαβu|π(p)〉 = i(pαgβα1 − pβgαα1)
〈q̄q〉
3fπ

,

〈0|d̄ ←Dα1

←
Dα2

←
Dα3 γ5σαβu|π(p)〉

=
im2

0〈q̄q〉
36fπ

[pα(gα1α2gα3β + gα1α3gα2β + gα3α2gα1β)

−(α ↔ β)]. (5)

Here m2
0 and δ

2 are defined via

〈q̄D2q〉 = m2
0

2
〈q̄q〉,

〈0|d̄gsG̃αβγβu|π(p)〉 = iδ2fπp
α. (6)

Up to twist-5, these are all the possibilities coming from
the expansion of the quark–antiquark components at the
order O(pµ).

The additional contribution to the OPE is shown by
Fig. 1b where one gluon emitted from the c-quark propa-
gator is combined with the quark–antiquark component.
Specifically, the c-quark propagator with one gluon being
attached is given by [28]

− gsGαβ

2(k2 −m2
c)2

[
kαγβ − kβγα + (k/+mc)iσαβ

]
, (7)

where Gαβ = tAGαβ . The color matrices tA are normalized
via Tr(tAtB) = δAB/2. Taking the gluon stress tensor into
the quark–antiquark component, one can write down the
correlation function into the form

Π(p, q) = 2i
∫

d4k

(2π)4
(8)

× Tr

{
2(q − k)θγδ + (q/− k/+ imc)iσθδ

[(q − k)2 −m2
c ]

2

× Γ2
[
γ5σρλB

ρλθδ(k, p) + γτ εθδαβDταβ(k, p)
]
Γ1

}
.
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At the order O(pµ), the two functions appearing above
are given by

Bρλθδ = − m2
0〈q̄q〉

12× 32fπ
(gρθgλδ − gρδgλθ)pα(2π)4

× ∂

∂kα
δ(4)(k), (9)

Dταβ = − iδ2fπ

3× 32
(pαgτβ − pβgτλ)(2π)4δ(4)(k). (10)

Another function involving the pion matrix element of the
form

〈0|d̄γ5γτgsGθδu|π(p)〉 (11)

is of the order O(mq), which therefore has been neglected.
Once the Dirac matrices Γi(i = 1, 2) are given, we can

straightforwardly calculate the corresponding OPE from
(2) and (8). These give the OPE up to twist-5 at the order
O(pµ). Below, we will use this formalism to calculate the
couplingsDD∗π,D∗D∗π,D1D1π, andD∗D1π by choosing
appropriate Dirac matrices for them.

3 Sum rule for DD∗π

In this section, we construct a sum rule for the DD∗π
coupling using the correlation function

Πµ(p, q) = i
∫
d4xeiq·x (12)

×〈0|T{d̄(x)γµc(x), c̄(0)iγ5u(0)}|π(p)〉.
As two momenta are involved in the correlation function,
one can separate the correlation function in the following
two pieces:

Πµ = F1(p, q)pµ + F2(q, p)qµ. (13)

We construct a sum rule for F1(p = 0, q), which gives
a coupling determined at the order O(pµ). Defining the
D∗Dπ coupling by [17]

〈D∗(q)|D(q − p)π(p)〉 = gD∗Dπp · ε, (14)

and using

〈D|c̄iγ5u|0〉 = m2
DfD

mc
,

〈0|d̄γµc|D∗〉 = mD∗fD∗εµ, (15)

the low-lying pole contribution to F1(p = 0, q) is given by

− m2
DmD∗fDfD∗gDD∗π

mc(q2 −m2
D∗)(q2 −m2

D)
. (16)

A slightly different sum rule using the same correlation
function can be found in [20,21]. Specifically, the correla-
tion function in that approach was decomposed into

Πµ = Apµ +B(2q − p)µ (17)

and a sum rule was constructed for the function A. Note
that, by comparing this with (13), one can immediately
see that A = F1 + F2/2. Thus, in the expansion in terms
of the external momentum pµ, the function A involves
the term at the zeroth order in pµ (i.e. F2), which can
be trivially obtained from a vacuum correlation function
via the soft-pion theorem, as well as the term of the first
order in pµ (i.e., F1). To avoid the trivial contribution ob-
tained from the soft-pion theorem, we choose to work with
the decomposition of (13). Furthermore, as mentioned in
[17], the function A can contain some contribution from a
possible resonance (scalar particle D0), which can give an
additional uncertainty in the prediction.

Following the general strategy given in Sect. 2, we ob-
tain the OPE for the correlation function,

F1(q, p = 0) =
1

q2 −m2
c

[
mcfπ − 2

3
〈q̄q〉
fπ

(
2− m2

c

q2 −m2
c

)

−10
9
δ2fπmc

q2 −m2
c

(
1 +

m2
c

q2 −m2
c

)]

+
m2

0

6fπ
〈q̄q〉

[
5

6(q2 −m2
c)2

+
4m2

c

3(q2 −m2
c)3

− 4m4
c

(q2 −m2
c)4

]
. (18)

Note that the leading OPE has a simple pole in q2. Ac-
cording to QCD duality, higher resonance contributions
lying along the positive q2 are matched with the imagi-
nary part of the OPE above a certain threshold S0 which is
taken much higher than the low-lying pole. Since the sim-
ple pole structure 1/(q2 −m2

c) does not have non-analytic
structures in the duality region (q2 ≥ S0), it should not
pick up the continuum contribution. However, it is a com-
mon practice that the double-variable dispersion relation
is used to obtain a spectral density for a given OPE. Then
by naively restricting the dispersion integral below the
continuum threshold, one picks up the continuum contri-
bution even from the OPE of the form 1/(q2 − m2

c). In
this prescription, the continuum contribution is a simple
(and unphysical) pole at the continuum threshold [25,26,
24]. (See for example (3.12) of [22].) This pole at the con-
tinuum threshold does not resemble at all the higher res-
onance contributions lying along the positive q2. In fact,
this pole at the continuum is mathematically spurious. To
illustrate this in detail, let us determine the spectral den-
sity for the OPE 1/(q2 −m2

c) from the double dispersion
relation when the external momentum is zero,

1
q2 −m2

c

=
∫ ∞

0
ds

b(s)
(s− q2)2 . (19)

Under the successive Borel transformations [26], one can
determine the spectral function

b(s) = −θ(s−m2
c). (20)

When we put it back to the double dispersion relation,
we have to reproduce the OPE 1/(q2 − m2

c). Anything
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additional to it is mathematically spurious. Using (20) in
(19) and doing the integration by part, we obtain∫ ∞

0
ds

−θ(s−m2
c)

(s− q2)2 =
1

q2 −m2
c

+
θ(s−m2

c)
s− q2

∣∣∣∣
∞

0
. (21)

The second term is mathematically spurious as it is ad-
ditional to the one that we had started with. But when
it is restricted by the continuum threshold S0, the upper
limit is changed to S0 and the second term has a pole at
the continuum threshold. However, since the pole comes
from the spurious term, its contribution to the sum rule
is spurious.

Nonetheless, one may argue from intuition that the
continuum contribution should be present as the current
can couple to higher resonances. In fact, it may be possible
to build such a contribution if one uses a more sophisti-
cated current than the simple current of the form q̄Γ c.
We believe that the absence of the continuum is due to
a limitation of the current of the form q̄Γ c. But we be-
lieve that, as we demonstrated above, it is ad hoc to build
the continuum contribution from the OPE of the form
1/(q2 −m2

c).
We now match (16) with (18) to get a sum rule for the

D∗Dπ coupling. For simplicity, we neglect the mass dif-
ference between D∗ and D and set them to mD∗ = mD =
mav ≡ (mD∗ + mD)/2. Under the Borel transformation
(with the Borel mass M2), the final sum rule reads

gDD∗πfDfD∗ + T1M
2 (22)

=
mc

m3
av

M2e(m
2
av−m2

c)/M2
{
mcfπ − 4

3fπ
〈q̄q〉

+
[
− 2
3fπ

m2
c〈q̄q〉+

10
9
δ2fπmc − 5

36fπ
m2

0〈q̄q〉
]
1
M2

+
[
−5
9
δ2fπm

3
c +

1
9fπ

m2
0m

2
c〈q̄q〉

]
1
M4 +

m2
0m

4
c〈q̄q〉

9fπM6

}
.

Here T1 denotes the transitions from the low-lying reso-
nance to higher resonances. We will linearly fit the RHS
within a Borel window to determine the coupling as well
as the transition strength T1.

4 Sum rule for D∗D∗π

We now construct a sum rule for theD∗D∗π coupling. The
D∗D∗π sum rule can be constructed from the correlation
function (by setting Γ1 = γµ and Γ2 = γν in (1)). We have

Πµν(p, q) = i
∫
d4xeiq·x (23)

×〈0|T{d̄(x)γµc(x), c̄(0)γνu(0)}|π(p)〉.
Saturating the correlation function by the D∗ intermedi-
ate state and introducing the coupling via

〈D∗(q, ε2)|π(p)D∗(q − p, ε1)〉
= i

2
fπ
gD∗D∗πεαβµνε

α
1 ε

β
2p

µqν , (24)

the low-lying pole contribution at the first order in pµ is
given by [22]

−2gD∗D∗πf
2
D∗m2

D∗

fπ(q2 −m2
D∗)2

εαβµνp
µqν . (25)

The OPE part can be computed by following the gen-
eral prescription described in Sect. 2. After taking out the
common factor of εαβµνp

µqν , we obtain the OPE side

fπ

q2 −m2
c

+
2
3fπ

mc〈q̄q〉
(q2 −m2

c)2
+
8
9

fπδ
2

(q2 −m2
c)2

−10
9

fπδ
2m2

c

(q2 −m2
c)3

− 2
3fπ

m3
cm

2
0〈q̄q〉

(q2 −m2
c)4
. (26)

The terms involving m2
0 are different from the one in [22].

By matching the two sides, we obtain the sum rule for the
D∗D∗π coupling

gD∗D∗πf
2
D∗ + T2M

2

=
fπ

2m2
D∗
e(m

2
D∗−m2

c)/M2
[
fπM

2 − 2
3fπ

mc〈q̄q〉 − 8
9
fπδ

2

−5
9
fπδ

2 m
2
c

M2 +
m3

cm
2
0〈q̄q〉

9fπM4

]
. (27)

Here, T2 denotes the transitions from D∗ → higher reso-
nance states.

5 Sum rule for D1D1π

For the coupling D1D1π, we use the correlation function
involving axial-vector currents,

i
∫
d4xeiq·x〈0|T{d̄(x)γµγ5c(x), c̄(0)γνγ5u(0)}|π(p)〉.

(28)

Comparing this correlation function with (23), one can
easily see that the OPE for this correlation function can
be obtained by replacingmc → −mc in (26). We introduce
the D1D1π coupling similarly as (24). Then it is a simple
matter to construct a sum rule for the D1D1π coupling.
Namely, by replacing mc → −mc in (27), we have

gD1D1πf
2
D1
+ T3M

2

=
fπ

2m2
D1

e(m
2
D1
−m2

c)/M2
[
fπM

2 +
2
3fπ

mc〈q̄q〉 − 8
9
fπδ

2

−5
9
fπδ

2 m
2
c

M2 − m3
cm

2
0〈q̄q〉

9fπM4

]
. (29)

Again, T3 denotes the transitions from D1 → higher reso-
nance states.

6 Sum rule for D1D
∗π

The D1D
∗π coupling can be calculated from the correla-

tion function

i
∫
d4xeiq·x〈0|T{d̄(x)γµc(x), c̄(0)γνγ5u(0)}|π(p)〉. (30)
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[19,18] calculated the coupling using the light-cone QCD
sum rules. Both references considered the structure func-
tion proportional to gµν , but the OPE in either approach
is different. Here we choose to work with the structure
function proportional to qµpν + qνpµ, which turns out to
be rather simple.

In constructing the phenomenological side, we follow
[19] where the structure proportional to qµpν + qνpµ is
given by

gD1D∗π
mD1

mD∗

fD∗

q2 −m2
D∗

fD1

q2 −m2
D1

. (31)

Note that gD1D∗π has one dimension due to the way that
the coupling is introduced in [19], which is in contrast to
the other dimensionless couplings. The OPE side can be
calculated straightforwardly. It takes the simple form of

−fπ

[
1

q2 −m2
c

− 10
9

m2
c

(q2 −m2
c)3

]
. (32)

The term containing δ2 from the expansion of A(k, p) is
canceled with the similar term coming from Dταβ . Setting
mD∗ = mD1 = m̄ ≡ (mD∗ + mD1)/2 and matching the
two sides, we obtain

gD1D∗πfD∗fD1 + T4M
2

= fπe(m̄
2−m2

c)/M2
[
M2 − 5

9
m2

c

M2

]
. (33)

7 Analysis and results

In our analysis, we use the following set of QCD parame-
ters:

m2
0 = 0.8GeV

2, 〈q̄q〉 = (−0.24GeV)3, (34)

δ2 = 0.2GeV2, mc = 1.34GeV, fπ = 131MeV.

For the hadron masses, we use [29]

mD = 1.87GeV, mD∗ = 2.01GeV, mD1 = 2.42GeV.
(35)

We plot the Borel curves for the couplings DD∗π and
D1D

∗π in Figs. 2 and 3 using (22) and (33) respectively.
The corresponding curves for the D∗D∗π and D1D1π cou-
plings are shown in Fig. 3. To get the couplings, we need
to fit each curve with a straight line within an appropri-
ately chosen Borel window. The intersection between the
best fitting curve and the vertical axis at M2 = 0 gives
the values fDfD∗gDD∗π, fD1fD∗gD1D∗π, f2

D∗gD∗D∗π and
f2

D1
gD1D1π. All the curves are well fitted with a straight

line above minimum Borel mass, which depending on the
sum rules, ranges from 2–3GeV2. In that region, the
higher dimensional terms are suppressed. When we shift
the Borel window by 0.5 GeV2, the results reduce by 10%.

Table 1 shows the best fit values and the chosen Borel
window. For fDfD∗gDD∗π, our value is substantially
smaller than 0.51GeV2 obtained from the light-cone QCD
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M
2
(GeV

2
)

0.0

0.2
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0.6
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1.4

(G
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2 )

Fig. 2. The Borel curves for the DD∗π coupling from (22).
Here the RHS of the equation is plotted with respect to the
Borel mass M2

0 1 2 3 4 5 6

M
2
(GeV

2
)

0

1

2

3

(G
eV

3 )

Fig. 3. The Borel curves for the D1D
∗π coupling from (33).

Here the RHS of the equation is plotted with respect to the
Borel mass M2

Table 1. The best fitted values for the couplings are listed
here along with the chosen Borel window. An overall shift of
the Borel window by 0.5GeV2 to the higher mass region gives
10% error

Borel window (GeV2) fitted value

2.5 ≤ M2 ≤ 3.5 fDfD∗gDD∗π = 0.31GeV2

3 ≤ M2 ≤ 4 fD1fD∗gD1D∗π = 0.948GeV3

2 ≤ M2 ≤ 3 f2
D∗gD∗D∗π = 0.016GeV2

2 ≤ M2 ≤ 3 f2
D1gD1D1π = 0.012GeV2

sum rule analysis [17]. The origin of the difference may
be traced back to the use of the asymptotic pion wave
functions. In the light-cone sum rules, the values of the
twist-2 and twist-3 wave functions at the middle point,
ϕπ(1/2) ∼ 1.2 and ϕp(1/2) ∼ 1.5, enter as leading terms
in the OPE. But in our sum rules, these middle points
are replaced by the integrated strengths of the wave func-
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Fig. 4. The Borel curves for the D∗D∗π and D1D1π couplings
given in (27) and (29). Here the RHS of the equations are
plotted with respect to the Borel mass M2

tions
∫ 1
0 duϕπ(u) = 1,

∫ 1
0 duϕp(u) = 1, which are well

fixed by low-energy theorems. Though our approach is
different from the similar calculations in [20,22], our re-
sult for fDfD∗gDD∗π agrees with them. Also our value
of f2

D∗gD∗D∗π agrees with the results in [18]. Our result
for fD1fD∗gD1D∗π, 0.948GeV3, is somewhat larger than
0.68GeV3 from [19], which is obtained from the structure
function being proportional to gµν .

To get the couplings, we need to determine fD, fD1

and fD∗ . One may calculate these using QCD sum rules
of the two-point correlation function in the vacuum. Cur-
rently these values are not known precisely. According to
[18], they are fD = 170MeV, fD∗ = 220MeV and fD1 =
240MeV. A somewhat different set of the decay constants
can be found in [19], fD = 160MeV, fD∗ = 240MeV and
fD1 = 300MeV. Using these, we obtain the coupling con-
stants

gDD∗π = 8.29(8.07), gD1D∗π = 17.95(13.6)GeV,
gD∗D∗π = 0.33(0.278), gD1D1π = 0.208(0.133). (36)

where the numbers (the ones in parentheses) are obtained
by using the decay constants given in [18] ([19]). To make
a more precise prediction, one may need to determine the
decay constants precisely. To summarize, we present in
Table 2 our results in comparison with the other previous
calculations.

These couplings are important ingredients for estimat-
ing the absorption cross section of J/ψ by π mesons. Up
to now meson-exchange models in the calculation of the
absorption cross section are based on an effective chi-
ral lagrangian with only pseudoscalars (D,π) and vector
mesons (J/ψ,D∗). We believe that the addition of the
axial partner of D∗, namely the D1 meson, will reduce
the value for the existing calculation. The reason is this.
Consider the dissociation of J/ψ by pions into D and D∗.
In the existing meson-exchange calculations, the diagrams
contributing to the process are the contributions from the
s-channel D meson, the t-channel D∗ mesons and the di-
rect four-point coupling, which gives a non-trivial contri-

Table 2. Comparison of our results with the other published
results. The results of [17–19] are from light-cone QCD sum
rules, the results from [20,22] are from the conventional sum
rules, and the result of [30] is from the three-point sum rules

gDD∗π gD1D∗π (GeV) gD∗D∗π gD1D1π

this work 8.2 ± 0.1 15.8 ± 2 0.3 ± 0.03 0.17 ± 0.04
[17] 12.5 ± 1
[18] 11.85 ± 2.1 0.31 ± 0.08
[19] 10 ± 2
[20,22] 9 ± 2 0.35 ± 0.08
[30] 5.7 ± 4

bution. The form of the couplings are obtained from the
chiral SU(4) lagrangian with vector mesons introduced in
the massive Yang–Mills approach. We believe that the ad-
dition of the D1 meson will partly cancel the contribution
from the direct four-point coupling. This is so because
this is precisely how the Adler consistency condition for
the ρ–π forward scattering amplitude is obtained in the
massive Yang Mills approach [31]. Namely, one has to in-
troduce the axial partner of ρ, the a1 meson, whose con-
tribution in the s-channel will cancel the direct four-point
coupling of the ρρππ and make the amplitude vanish in
the soft-pion limit. A similar cancellation will occur be-
tween the direct four-point coupling of J/ψ–π–D–D∗ and
the J/ψ + π → D1 → D + D∗ contribution. Of course,
how big the cancellation actually is in this particular case
has to be studied in detail and that will be done in the
future work reported in [16].
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